Received 15 May 2006

Accepted 18 May 2006

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Xiao-Yong Zheng,^{a,b} Hong Su^a and Yun-Long Feng^a*

^aZhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China, and ^bWenzhou Medical College, Wenzhou, Zhejiang 325000, People's Republic of China

Correspondence e-mail: sky37@zjnu.cn

Key indicators

Single-crystal X-ray study T = 273 KMean σ (C–C) = 0.002 Å R factor = 0.028 wR factor = 0.081 Data-to-parameter ratio = 16.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

catena-Poly[[diaquabis[(4-tolylsulfanyl)acetato- κ O]cobalt(II)]- μ -4,4'-bipyridine- $\kappa^2 N$:N']

In the crystal structure of the title complex, $[Co(C_9H_9O_2S)_2-(C_{10}H_8N_2)(H_2O)_2]_n$, a one-dimensional chain is formed in which the Co^{II} atoms are in a slightly disorted octahedral environment, coordinated by two water molecules, two (4-tolylsulfanyl)acetate and two bridging 4,4'-bipyridine ligands. The Co atom lies on a twofold rotation axis. These one-dimensional chains are connected into a two dimensional network *via* intermolecular O-H···O hydrogen bonds

Comment

Some related complexes of 4,4'-bipyridine (4,4'-bipy) have been reported recently (Wen *et al.*, 2005; Kryschenko *et al.*, 2003; Lang *et al.*, 2004). The (4-tolylsulfanyl)acetate (tta) ligand can not only coordinate to metal centers through the carboxylate group, but also form π - π interactions through the 4-tolylsulfanyl group (Gao *et al.*, 2005), although none are present in the title structure, (I).

The structure of (I) (Fig. 1) consists of linear chains formed through 4,4'-bipy ligands linking six-coordinate Co^{II} atoms, which lie on twofold rotation axes. Selected bonds lengths and angles are given in Table 1. Intermolecular $O-H\cdots O$ hydrogen bonds link chains into a two-dimensional network (Table 2). The title complex is isostructural with the nickel analogue (Lin *et al.*, 2006).

Experimental

 $Co(NO_3)_2$ ·6H₂O (0.145 g, 0.5 mmol), (4-tolylsulfanyl)acetic acid (0.091 g, 0.5 mmol) 4,4'-bipy (0.039 g, 0.25 mmol) and water (18 ml) were sealed in a 25 ml Teflon-lined stainless steel reactor and the solution was heated at 433 K for 72 h and then cooled to room

© 2006 International Union of Crystallography All rights reserved

metal-organic papers

temperature over a period of 72 h. Red crystals suitable for X-ray analysis were obtained.

Z = 4

 $D_r = 1.500 \text{ Mg m}^{-3}$

 $0.30 \times 0.28 \times 0.18 \text{ mm}$

8766 measured reflections

3178 independent reflections

 $w = 1/[\sigma^2(F_0^2) + (0.0485P)^2]$

+ 0.1764*P*] where $P = (F_0^2 + 2F_c^2)/3$

 $\Delta \rho_{\rm max} = 0.27 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.24 \text{ e} \text{ Å}^{-3}$

 $(\Delta/\sigma)_{\rm max} = 0.001$

2583 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation

 $\mu = 0.83 \text{ mm}^{-1}$

T = 273 (2) K

Prism, red

 $R_{\rm int} = 0.020$

 $\theta_{\rm max} = 27.7^{\circ}$

Crystal data

 $\begin{bmatrix} Co(C_9H_9O_2S)_2(C_{10}H_8N_2)(H_2O)_2 \end{bmatrix} \\ M_r = 613.61 \\ Monoclinic, C2/c \\ a = 21.684 (4) Å \\ b = 11.376 (2) Å \\ c = 11.032 (2) Å \\ \beta = 92.828 (3)^{\circ} \\ V = 2718.0 (9) Å^3 \end{bmatrix}$

Data collection

Bruker SMART CCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.779, T_{\max} = 0.861$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.028$ $wR(F^2) = 0.081$ S = 1.083178 reflections 188 parameters H atoms treated by a mixture of independent and constrained refinement

Table 1

Selected geometric parameters (Å, °).

Co1-O1W	2.1077 (12)	Co1-N1	2.1338 (16)
Co1-O2	2.1254 (10)	Co1-N2 ⁱ	2.1412 (17)
$O1W - Co1 - O1W^{ii}$	173.77 (6)	$O1W^{ii}$ -Co1-N1	93.11 (3)
$O1W-Co1-O2^{ii}$	91.64 (5)	O2-Co1-N1	91.32 (3)
O1W ⁱ -Co1-O2 ⁱⁱ	88.21 (5)	O1W ⁱⁱ -Co1-N2 ⁱ	86.89 (3)
O2-Co1-O2 ⁱⁱ	177.36 (5)	$O2-Co1-N2^{i}$	88.68 (3)

Symmetry codes: (i) x, y - 1, z; (ii) $-x + 1, y, -z + \frac{1}{2}$.

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$\begin{array}{c} O1W-H1WA\cdots O1^{i}\\ O1W-H1WB\cdots O2^{iii} \end{array}$	0.82(1) 0.81(1)	1.85 (2) 2.07 (2)	2.6317 (18) 2.8470 (16)	159 (2) 161 (2)

Symmetry codes: (i) -x + 1, y, $-z + \frac{1}{2}$; (iii) -x + 1, -y + 1, -z.

The methyl groups were allowed to rotate to fit the electron density $[C-H = 0.96 \text{ Å} \text{ and } U_{iso}(H) = 1.5U_{eq}(C)]$; the other C-bound H atoms were positioned geometrically [aromatic C-H = 0.93 Å and aliphatic C-H = 0.97 Å, with $U_{iso}(H) = 1.2U_{eq}(C)]$. Water H atoms were located in a difference map and refined with distance restraints of O-H = 0.85 (2) Å and $H \cdots H = 1.30$ (2) Å; their displacement parameters were set at $1.5U_{eq}(O)$.

Figure 1

A view of part of the title structure, showing 30% probability displacement ellipsoids [symmetry codes: (A) x, -1 + y, z; (B) -x + 1, y, $\frac{1}{2} - z$; (C) x, 1 + y, z.].

The chain structure of the title compound. All H atoms have been omitted for clarity.

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2002); software used to prepare material for publication: *SHELXL97*.

The authors thank the Foundation of Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces and Wenzhou Medical College for supporting this work.

References

Bruker (2002). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Gao, S., Huo, L.-H., Shu, H. & Ng, S. W. (2005). Acta Cryst. E61, m389–m391.

- Kryschenko, Y. K., Seidel, S. R., Arif, A. M. & Stang, P. J. (2003). J. Am. Chem. Soc. pp. 5193–5198.
- Lang, J.-P., Xu, Q.-F., Yuan, R.-X. & Abrahams, B. F. (2004). Angew. Chem. Int. Ed. pp. 4741–4745.
- Lin, H., Su, H. & Feng, Y.-L. (2006). Acta Cryst. E62, m747-m749.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Wen, Y.-H., Zhang, J., Wang, X.-Q., Feng, Y.-L., Cheng, J.-K., Li, Z.-J. & Yao, Y.-G. (2005). New J. Chem. pp. 995–997.